BH MASS ESTIMATION

for Quasars

J. Sulentic -- IAA - CSIC P. Marziani -- OA Padova - INAF

Estimating BH Mass

Broad Emission Lines as virial estimators

FWHM Hbeta \rightarrow virial v

Single epoch FWHM measures? rms? Composites? Or sigma?

$$M_{
m BH} = rac{v^2 r_{
m BLR}}{G}$$

$$v = f F W H M$$

$$v = \sqrt{3}/2 \text{ FWIIM}(\text{II}\beta_{\text{BC}})$$

The f factor?

• BLR geometry and kinematics

• Strong inclination dependence

Of order ~~1-2 (or 5.5 Onken et al. 2009 using sigma)

• Same for Pop. A and B?

Not all FWHM Hbeta are the same

Sources above and below FWHM Hbeta=4000km/s show different structure (Sulentic et al. 2002)

Relationship between FWHM and sigma changes -reflecting multiple components (Collin et al. 2006: $f(A) \approx 2.12$ $f(B) \approx 0.5-1.0$)

Sulentic et al. 2002: LIL/BLR Structural Difference between Population A and B (Sample of about 200 Seyfert 1 and Iow-redshift quasars High S/N and resolution 4 Å FWHM)

Extreme M_BH

• Pop. A extremely narrow profiles lead to underestimates of MBH

 Most extreme MBH values came from pop B sources using FWHM Hbeta uncorrected for the extra very broad component.

Above $z \sim 0.7?$

• Follow Hbeta into the IR to z = 3.8

• MgII2798 with suitable corrections to z > 6

• CIV1549 dangerous

So we have "v" – ways to estimate BLR size

• Directly: reverberation mapping

(Peterson & Horne 2006)

- Using r_BLR vs. Luminosity relation (Marziani et al. 2009: Trachtenbrot et al. 2011)
- Photoionization Method

(Dibai 1984; Wandel & Yahil 1985; Padovani & Rafanelli 1989; Wandel et al. 1999; Negrete et al. 2011) Determination of central compact object mass

 $c\tau_{max}$ provides an emissivity weighted estimate of the BLR linear distance (size) from central continuum source

$$r_{BLR} \approx c \tau_{\max} \approx 33 \left(\frac{\lambda L_{5100}}{10^{44} erg \, s^{-1}} \right)^{0.7} l.d.$$

Kaspi et al. 2000

FIG. 6.—BLR size-luminosity relation. The solid line is the best fit to the data. The dashed line is a fit with a slope of 0.5. More recent work indicates exponent ≈ 0.5

Bentz et al. 2009

Paves the road to easy mass estimates

Bolometric luminosity estimated from bolometric correction \approx 9 - 10 times the optical luminosity (at 5100 Å)

Elvis et al. 1994; see Nemmen & Brotherton 2010 for a more modern approach

$$U = \frac{\int_{\nu_0}^{+\infty} \frac{L_\nu}{h\nu} d\nu}{4\pi n_{\rm H} cr^2}$$

 $M_{\rm BH} = \frac{3}{4} \frac{r_{\rm BLR} \rm FWHM (H\beta_{BC})^2}{\widetilde{}}$

(Kaspi et al., 2000; 2005)

$$r_{BLR} = 0.85 \cdot 10^{17} \cdot \left[\frac{\lambda L_{\lambda} (5100\text{\AA})}{10^{44} \text{ erg s}^{-1}} \right]^{0.7} \text{ cm}$$

$$\lambda L_{\lambda} (5100 \text{\AA}) = 3.14 \cdot 10^{35 - 0.4(M_B)}$$

$$\lambda L_{\lambda} (5100 \text{\AA}) = 4\pi d_{\text{P}}^2 \lambda f_{\lambda} \text{ergs s}^{-1}$$

Object name (1)	W(Hβ) ^a (2)	W(FeIIλ4570) ^a (3)	FWHM(FeII) ^b (4)	$F(H\beta_{BC})/F(H\beta)^{c}$ (5)	$FWHM(H\beta_{BC})^d$ (6)	$\log M_{\rm BH} H \beta_{\rm BC}^{e}$ (7)	$\log L_{\rm bol}/L_{\rm Edd} { m H} eta_{ m BC}^e$ (8)
A1	72 +11	26 +3	2700 +1100	1.00			
A2	65 +10 52	49 +13	3700 +2000	1.00			
B1	86 +13	26 +5	5200 +2400	0.27	4000		
B2	70 ⁺ ₋₁₁	$44 + 8^{-6}_{-14}$	5000 +800 -1700	0.32	4000		
A	61 +10	25 +7	2700 +1500	1.00			
M	67 +10	35 +7	3800 +1450	1.00			
MB	86 +10 -13	$31 \frac{-6}{-7}$	5000 ⁺¹⁶⁰⁰ ₋₁₈₀₀	0.27	4100		
43A	91 +10	36 +7	3000 +500	1.00		6.1	-0.74
44A	69 +13	38 +10	2600 +508	1.00		6.8	-0.47
45A	86 +10	43 +18	2800 +138	1.00		7.8	-0.43
46A	80 +10	47 +10	3000 +600	1.00		8.6	-0.26
47A	68 +18	30 +8	3000 +1400	1.00		9.6	-0.20
48A	60^{-11}_{-11}	27 +5 -8	3800 +1500 -1100	1.00		10.3	+0.11
43B	130 +20	8 +10	, , f	0.59	4600	7.1	-0.68
44B	125 + 10	38 +5	5600 +600	0.49	4700	7.7	-1.37
45B	111 + 15	29^{+30}	4900 +500	0.35	4400	8.4	-0.98
46B	93 +10	22 +5	5900 +350	0.37	4800	9.1	-0.73
47B	92 +13	38 +7	4900 +1600	0.27	4000	96	-0.24
48B	75 +94	12 +3	4600 +1288	0.23	4300	10.3	+0.03

Table 6. Measurements on the broad lines of median spectra.

^{*a*} Equivalent width of H β (H β_{BC} + H β_{VBC}) and FeII λ 4570in Å ±2 σ confidence level uncertainty. Note that those values have been computed on median spectra with flux normalized to unity at $\lambda = 5100$ Å. Considering that the continuum shape is not flat, but that there is however little dispersion in continuum shape across the median spectra, it is $W(H\beta) \approx I(H\beta)/1.1$, and $W(FeII\lambda4570) \approx I(FeII\lambda4570)/1.25$ Å. ^{*b*} FWHM of lines in the blend in units of km s⁻¹ computed by specfit as for the individual sources. Uncertainty is at ±2 σ confidence level. See text for details. ^{*c*} Intensity ratio of the H β_{BC} to total H β line emission i.e., H β_{BC} and H β_{VBC} . ^{*d*} FWHM of the H β_{BC} component i.e., after removing H β_{VBC} . ^{*e*} Logarithm of M_{BH} , in solar masses, and of L_{bol}/L_{Edd} . Values have been computed following Paper II, using the FWHM(H β_{BC}) reported in Col. (6), and assuming the average bin luminsosity. Values are therefore only indicative. No M_{BH} or L_{bol}/L_{Edd} has been computed for median in spectral types since they are normalized median spectra made regardless of their luminosity. ^{*f*} FeII_{opt} too faint for FWHM to be meaningfully constrained.

