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How Z-pinch works

The ~J × ~B Lorentz force makes
the plasma implode.

Most of the X-ray emission takes
place at the stagnation phase.

“Z machine” (Sandia Labs, US) Z-pinch in Weizmann Inst. (Israel)
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Pinches as laboratory astrophysics

[You et al., 2005]

“A simple arrangement of
electric and magnetic fields
causes plasma to form shapes
reminiscent of the jets
generated near supermassive
black holes.”

Pinching is a naturally occuring
phenomenon, but importance
of z-pinches as an
astrophysical laboratory goes
well beyond that.



Pinches as laboratory astrophysics: im/explosions

Z-pinch (r ∼ 1 cm) [Foord et al., 1994]

NGC 7662 (r ∼ 1 ly) [Osterbrock et al., 1966]
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Pinches as laboratory astrophysics: instabilities

[Osin et al., 2011]

NGC 1952 (Crab Nebula)

Rayleigh-Taylor instability produces “fingers” and filaments.
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Energy conversion in imploding plasmas

Imploding plasmas are promising candidates for fusion (NIF,
MagLIF) and unique sources of intense x-ray radiation (z-pinches).

NIF Z-pinch

Conversion of hydrodynamic ion motion

Ion hydro Ion heat

X-ray radiation

Fusion reaction

Electron heat

Coulomb barrier penetration

Thus, one needs to
measure ion Ti. It is
also important to know
the hydro energy.

Principal difficulty:

The Doppler broadening (also, neutron spectrum) gives
information only on the total ion velocity distribution→ Teff

i ≥ Ti.



Importance of distinguishing between Teff
i and Ti

Assuming Ti = Teff
i may result in crucially misinterpreted data.

At WIS, we have succeeded developing advanced diagnostics
capable of telling Teff

i and Ti apart.



Diagnostics setup

Three time-resolved data sources: spectra of Ne Ly-α dielectronic
satellites, gated x-ray pinhole imaging, and an absolutely calibrated
photo-conductive detector (PCD) sensitive to ~ω & 700 eV.

In addition, time-integrated
wide spectrum is taken.



Plasma parameters inferred

Assuming the plasma is uniform, we obtain

Plasma radius rpl – from the pinhole x-ray imaging;

Electron density ne – from the satellite ratios;
Electron temperature Te – from the time-dependent
collisional-radiative (CR) model satisfying both the absolute
PCD signal IPCD and time-intergated continuum slope;
Teff

i – from the satellite Doppler broadening (the Stark width is
negligible);

Ti is inferred from the data above, plus using either
Detailed energy-balance analysis
[Kroupp et al., 2011, Maron et al., 2013]; or
Effect of Γii on Stark lineshapes of high-n transitions
[Alumot et al., 2017] (in preparation).

This modeling described all the data very well, within 1 – 2 std. dev.
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Determination of ne and Teff
i
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2p2 (3P) → 1s2p (3P)

2s2p (3P) → 1s2s (3S)

Widths and intensities of the
Ne Ly-α satellites allow for
determining Teff

i and ne,
respectively. In this
example, Teff

i = 1200 eV
and ne = (5± 1)× 1020 cm−3.
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[Seely, 1979,
Kroupp et al., 2007].
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Determination of Ti during z-pinch stagnation

Two methods have been used:

1. Detailed energy-balance analysis

Ti − Te

τie
=

dTeff
i

dt
[Kroupp et al., 2011]

2. Effect of Γii on Stark lineshapes
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Both methods give the
same, consistent results.



Hypothesis: turbulent hydromotion

It was inferred that, at the stagnation phase,

the ion kinetic energy at the stagnation phase is dominantly
stored in non-thermal hydrodynamic motion;

the plasma appeared largely uniform at spatial and temporal
scales down to ∼100µm and ∼1 ns, respectively;

the Reynolds number is high (∼105);

the flow is supersonic.

Turbulence is an obvious candidate for such a significant
small-scale hydrodynamic motion.

Were supersonic turbulence present, it would imply substantial
nonuniformity in quantities such as the density. However, the
previous analysis assumed a uniform plasma.
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New analysis

The data need to be re-analyzed assuming a physically sound
model of turbulence. [Kroupp et al., 2017]

Instead of ne = n0
e = const, there is now a probability distribution

function (PDF) P(ne) – actually, P(t, z; ne).

Let us switch to dimensionless quantity

ξ ≡ ne/n0
e ;

∫
P(ξ) dξ = 1.

The average density is

〈ne〉 = n0
e

∫
ξ P(ξ) dξ.

(note that 〈ne〉 , n0
e).
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New analysis (cont.)

Assuming the collisional-radiative equilibrium is established much
faster than the hydromotion, the intensity of a spectral line (or
continuum radiation) is [Stamm et al., 2017]

〈I〉 =

∫
α(~r)d3r = πr2

pl`

∫
α(ξ)P(ξ) dξ,

where α ∝ ξ2 is the local plasma emissivity, and rpl and ` is the
radius and length of the plasma segment, respectively.

In particular, the absolutely calibrated PCD signal is

IPCD ∝ πr2
pl`

∫
ξ2P(ξ) dξ.

(
1 −

δIPCD

IPCD

)  r0
pl

rmax


2

≤

∫
ξ2 P(ξ) dξ ≤

(
1 +

δIPCD

IPCD

)  r0
pl

rmin


2

.
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New analysis (cont.)

Density determination:
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The measured quantity Rexpt is known – and should remain –
within its error bars, i.e., 〈R〉 = Rexpt = R0 ± δR. Therefore,
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Constraints on P(ξ)

To summarize:(
1 −

δIPCD

IPCD
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Once P(ξ) is determined, the model plasma radius is corrected:

rpl = r0
pl/

√
〈ξ2〉 .
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Constraints on PV(ξV) and β

The last step is to use the volumetric density distribution:∫
PV (ξV ) dξV = 1,

∫
ξVPV (ξV ) dξV = 1.

Introduce β ≡ ξ/ξV = 〈ne〉/n0
e ; so 〈ξk〉 = βk〈ξk

V〉.

Finally: √√
1 − δIPCD

IPCD

〈ξ2
V〉

r0
pl
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√√
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Turbulence density PDF

Volumetric PDF of [Hopkins, 2013]:

PV (ξV ) dξV =
I1
(
2
√
λω(ξV )

)
exp

[
λ + ω(ξV)

] √
λ

θ2ω(ξV )
dξV

ξV

0 0.5 1 1.5 2 2.5 3
ξV

0.0
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2.0

P(
ξ V

)

M = 1.0
M = 1.5
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Here,
λ ≡ (1 + θ)3/2 ln

(
1 + M2

c

)
/2θ2

ω(ξV ) ≡ λ/(1 + θ) − ln(ξv)/θ

θ ≈ 0.05Mc

Compressive Mach number
Mc = bM, b ≈ 0.4

I1 – modified Bessel function
of the first kind
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Results: model mean density and plasma radius
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The mean plasma density is inferred to be lower by a factor ∼2.

The corrected plasma model radius fits the data better.

The other plasma parameters (Te, Ti, and Teff
i ) remain unaffected.
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Results in a wider scientific context

In addition to better understanding of z-pinch stagnation plasmas,
a crucial question arises:

Is the supersonic turbulent hydromotion generated and carried
along during the implosion phase?

If yes (and we have preliminary results confirming it), then
z-pinches represent a test bed for:

a recently proposed novel fast ignition scheme
[Davidovits and Fisch, 2016] for inertial confinement;

astrophysical phenomena, such as molecular cloud dynamics,
star formation efficiency, the core mass/stellar initial mass
function, and more.
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Conclusions

Inferred Ti � Teff
i at z-pinch stagnation, with Re ∼ 105 and

observing no large-scale plasma non-uniformities, strongly
hints at turbulence; supersonic one (M ∼ 1 – 2).

Analysis with the uniform-plasma assumption lifted shows that
the picture of a preponderance of turbulent energy remains
intact.

As a result, the mean plasma density is inferred to be lower by
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Extra material



Data summary

The experimental data [Kroupp et al., 2011] relevant for the analysis
presented; the plasma parameters assumed for (r0

pl, n0
e , Te) and inferred

from (Ti, M, Re) the uniform-plasma modeling; the calculated isothermal
turbulence parameters, volumetric density factor β and respectively
corrected plasma electron density and radius. Units are as follows: all
radii are in mm, all temperatures are in eV, and densities are in 1020 cm−3.

Experimental data Uniform plasma Isothermal turbulence
t (ns) δR IPCD (GW) rmin rmax Teff

i r0
pl n0

e Te Ti M Re θ σ2
s,V 〈ξ2

V 〉 〈ξ
3
V 〉 β nturb

e rturb
pl

-3.4 0.15 0.35 ± 0.3 0.19 0.41 3000 0.23 6.0 120 250 2.4 8.1 × 104 0.048 0.70 1.84 5.77 0.32 1.9 0.53
-2.0 0.15 2.0 ± 1.0 0.25 0.47 2100 0.29 6.0 175 230 1.7 6.9 × 104 0.034 0.40 1.44 2.86 0.54 3.2 0.45
-1.2 0.15 3.8 ± 1.1 0.36 0.52 1800 0.31 6.0 190 210 1.6 7.7 × 104 0.032 0.36 1.39 2.60 0.60 3.6 0.44
0.0 0.15 6.5 ± 0.7 0.46 0.68 1300 0.35 6.0 185 200 1.3 8.9 × 104 0.026 0.25 1.26 1.96 0.57 3.4 0.55
2.0 0.15 3.6 ± 1.0 0.36 0.53 900 0.24 6.0 155 180 1.2 7.4 × 104 0.024 0.21 1.22 1.80 0.53 3.2 0.41
3.3 0.15 2.3 ± 0.9 0.21 0.43 720 0.20 6.0 140 180 1.0 5.1 × 104 0.020 0.15 1.16 1.53 0.62 3.7 0.30



Results: turbulent density PDF’s
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Is turbulence in this stagnating plasma isothermal?

Compare vflow to a thermal conduction velocity (following
[Zeldovich and Raizer, 1967]),

vcond =
Lh

τcond
≈ 4 × 1021 ζ(〈Zi〉)

(〈Zi〉 + 1)λei

T5/2

neLh
,

where Lh is a length scale (Lh ∼ rpl), λei is the Coulomb logarithm,
and ζ(8.5) ≈ 2.7; T is in units of eV, ne in cm−3, and Lh in cm.

When vcond/vflow � 1, isothermality is expected.

vcond/vflow ∼ 2 for Lh ∼ rpl at t = −3.4 ns, and ∼ 6 for later times.

An accurate determination of the degree of isothermality would
require detailed simulations.The inferred Te will also need to be
reconsidered, since the emissivity depends on Te strongly.

Interestingly, in Sandia Z experiments, where Te and 〈Zi〉 reach
higher values, vcond/vflow � 1, thus the assumption of turbulence
isothermality should be fully justified.
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