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Interatomic potentials

• Large quantum chemistry calculations

provide very accurate potentials for electronic

states of atom-atom systems at short and

intermediate separations.

Limited to low excited electronic states.

• Present problems involve low-energy

scattering processes for excited electronic

states.

Requirement: Accurate representation of

potentials at medium and large interatomic

separations.
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Modelling of atom-atom system

• Three-body model used; two atomic cores

and one active electron, i.e. Na+ + He + e−

and K+ + He + e−.

• Electron-core interaction.

Va,b(r) = −
Z

r
(1 + δ + δ′r) exp(−αr)

−
z

r
−
αd
2r4

F1(r)−
αq − 6βd

2r6
F2(r)

+small energy term(optional) ,

where Z + z=nuclear charge, z = m,n and

F1(r) and F2(r) are cutoff factors.

Parameters α, δ and δ′ are varied to reproduce

the positions of known energy levels for z 6= 0,

and phase shifts for scattering for z = 0. The

fits also predict the correct number of nodes

in the wave functions.
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• Core-core interaction.

Vc(R) ' −z2
a
αbd

2R4
− z2

b

αaq

2R6

+short− range terms .

Options for short-range term.

(a) Use the three-body model itself to

generate potential.

(b) Use simple analytic form based on

perturbation theory.

Choices (a) and (b) differ only for R ≤ RA+RB
where RA and RB are the mean radii of Na+

and K+.
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• Three-body interaction.

V3(r,R) '
αd
r2R2

P1(r̂ · R̂) +
αq

r3R3
P2(r̂ · R̂)

+small energy term(optional) ,

for R large, where R is the internuclear

separation. P1(r̂ · R̂) and P2(r̂ · R̂) are

Legendre polynomials.

• The model Hamiltonian.

H = −
1

2
∇2 + Va(ra) + Vb(rb) + Vc(R)

+V3(ra,R) + V3(rb,R)

where ra and rb are the position vectors of the

electron relative to cores A and B. A set of

atomic basis states on one or both centres is

used and the Hamiltonian matrix diagonalized

to obtain the electronic energies.
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Principles and problems

(a) The long-range interactions are based on

well-known perturbation theory.

(b) No existing data for the molecules NaHe

and KHe are used to fix any variable parame-

ters.

(c) Positions of virtual states in electron-core

model potentials are sensitive to precise fit.

(d) Model potentials can be l-dependent or

l-independent.

(e) A different potential may have to be used

for ground states, e.g. He(1s2).
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Theory of spectral line broadening

The main references are:

G. Peach and I.B. Whittingham,

New Astronomy Reviews, 53, 227-30 (2009).

M. Baranger, Phys. Rev. A, 111, 481-93

(1958).

• Baranger’s quantum-mechanical theory.

The impact theory has been widely used, but is

actually only an approximation to the general

theory developed in this first important paper.
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The line profile I(ω) is defined in terms of a

correlation function C(s) by

I(ω) = R
1

π

∫ ∞
0

C(s) exp(i∆ωs) ds ,

where ω is the angular frequency, ∆ω is the an-

gular frequency separation from the line centre

and s is a time variable. R denotes ’real part

of’. In his first paper Baranger showed that

C(s) can be written as

C(s) = exp[−N g(s)] ,

where N is the perturber density and g(s) is

split into two parts, i.e.

g(s) = g1(s) + g2(s).

Only the first term g1(s) is used here as in

many circumstances the second term, g2(s),

can be neglected.
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We consider the transition niLi → nfLf be-

tween states niLiMi and nfLfMf of the alkali

atom. The wave function describing the scat-

tering by a potential VΛ(r) is given by

ψΛ(r) =
∞∑
l=0

(2l + 1) il exp(iηΛl)
1

k
1
2r
FΛl(k, r)Pl(k̂ · r̂) ,

where Pl(k̂ · r̂) is a Legendre polynomial and

the radial functions FΛl(k, r) are solutions of

the equation[
d2

dr2
−
l(l + 1)

r2
− 2MVΛ(r) + k2

]
FΛl(k, r) = 0 .
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The potential VΛ(r) and the atom-atom sepa-

ration r are in atomic units and M is the re-

duced mass of the emitter-perturber pair in

units of the electron mass m. The momentum

k in atomic units is given by

k =
Mmva0

h̄
,

where v is the relative velocity of the emitter

and perturber The asymptotic form of FΛl(k, r)

is specified by

FΛl(k, r) ' k−
1
2 sin(kr −

1

2
lπ + ηΛl) ,

where ηΛl ≡ ηΛl(k) is the elastic scattering

phase shift, and as r → 0

FΛl(k, r) ∝ rl+1 .
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For the cases considered here, the scattering

matrix elements Si and Sf are given by

Si ≡ 〈lΛi|S|lΛi〉 = exp(2iηΛil) ; Λi = |Mi| ;
Sf ≡ 〈lΛf |S|lΛf〉 = exp(2iηΛf l) ; Λf = |Mf | .

Then we obtain

N g1(s) = (w + id) s ,

where

w + id = C
λ1/2

M3/2

∑
MiMfµ

(
Li 1 Lf
Mi µ Mf

)2

×
∫ ∞

0
exp(−u) du

×
∞∑
l=0

(2l + 1)
{

i exp[i(ηΛi − ηΛf)]
}

× [ 2M
∫ ∞

0
FΛil(k, r) ∆V FΛf l(k, r) dr]

and
(
a b c
d e f

)
is a 3-j coefficient.
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The quantities introduced here are defined by

∆V = VΛi − VΛf

and

C = N 4
√
π
h̄a0

m
; u =

E

κT
=
λk2

M
; λ =

h̄2

2ma2
0κT

,

where κ is the Boltzmann constant, T is the

temperature and E refers to the energy of the

relative motion. All the dimensional informa-

tion is contained in the factor C where a0 is

the Bohr radius. It then follows from that w

and d are the half-half width and shift of the

Lorentz profile given by

I(ω) =
1

π

w

(∆ω − d)2 + w2
.
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The well-known impact theory is obtained di-

rectly by replacing the wave functions FΛil(k, r)

and FΛf l(k, r) by their asymptotic forms so that

w + id = C
λ1/2

M3/2

∑
MiMfµ

(
Li 1 Lf
Mi µ Mf

)2

×
∫ ∞

0
exp(−u) du

×
∞∑
l=0

(2l + 1)
1

2
[1− SiS∗f ] .

If the Born approximation is made, the phase

shifts are calculated from the expression

tan(ηΛl) = −2Mk
∫ ∞

0
r2VΛ(r) [jl(kr)]2 dr

for all values of l. jl(kr) is a spherical Bessel

function where

kr jl(kr) ' sin(kr −
1

2
lπ)

as r → ∞. The Born impact theory then fol-

lows directly.
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Finally we consider the one-perturber approxi-

mation. We define the quantity

P (ω) =
∫ ∞

0
FΛil(ki, r)D(r)FΛf l(kf , r) dr ;

D(r) ≡
D(r)

D(∞)
,

where in general, ki 6= kf . The dipole moment

for the transition Λi → Λf is D(r), which tends

to a constant, D(∞), as r →∞. Then P (ω) is

given by

(k2
i − k

2
f )P (ω) = 2M

∫ ∞
0

FΛil∆V D FΛf l dr

−
∫ ∞

0

dD
dr

(
FΛil

dFΛf l

dr
− FΛf l

dFΛil

dr

)
dr ,

where

(k2
i − k

2
f ) =

2mMa2
0

h̄
∆ω .
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We neglect g2(s) as experience shows that it

is negligible compared with the first term. The

profile in the line wings is then given by

L(ω) = [P (ω)]2

and we obtain

I(ω) '
1

π

w

∆ω2
; |∆ω| � w , |∆ω| � |d| .

If the range of validity of the Baranger theory

and the one-perturber approximations overlap,

then the correlation function C(s) can be re-

placed by

C(s) = 1−N g1(s)

and we can use these equations to obtain a

unification of the two profiles L(ω) and I(ω).
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Then the Lorentz profile is replaced by

I(ω) =
1

π

w(0)

(∆ω − d)2 + w(0)2

w(∆ω)

w(0)
,

where

w(∆ω) = C
λ1/2

M3/2

∑
MiMfµ

(
Li 1 Lf
Mi µ Mf

)2

×
∫ ∞

0
exp(−u) du

∞∑
l=0

(2l + 1)

×[ 2M
∫ ∞

0
FΛil(ki, r) ∆V FΛf l(kf , r) dr]2 ,

and

u =
λk2

i

M
.
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Results and discussion

Calculations have been completed for the widths

of the sodium and potassium resonance lines

broadened by helium using the interaction po-

tentials described in earlier work. The exten-

sive temperature range chosen, 100 K ≤ T ≤
10000 K, serves two purposes. It provides the

data required for the analysis of the spectra

of cool stars, but also tests the range of va-

lidity of the various theoretical approximations

discussed in this paper.

The main computational issues arise from the

slow convergence of the sum over angular mo-

menta l for the higher temperatures and the

associated requirement for a greater number

of points to be chosen for the integration over

energy.
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The radia1 equation describing the scattering

wave function is integrated directly to deter-

mine the exact wave functions and their phase

shifts for smaller values of l, l ≤ l0 say, and the

Born approximation is then used to evaluate

phase shifts for l0 < l ≤ lmax. The Born ap-

proximation for the scattering amplitude in its

closed form is used to complete the summa-

tion up to l =∞. Careful checks are made to

determine the optimum values of l0 and lmax

at each energy.
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Conclusions

In the present calculations we have demon-
strated that the formalism and the computa-
tional techniques that have been developed can
be successfully applied to obtain complete line
profiles from the line centre to the line wings
for all temperatures and for the lower perturber
densities for which the one-perturber approxi-
mation is valid. Calculations are in progress to
obtain the contribution from transitions where
the emitter-perturber system occupies a bound
state supported by the initial or final potentials
for the molecular states Λi and Λf . These are
known to contribute significantly in the far red
wings of the lines considered in this paper.

Comparisons will be made with other theoret-
ical approaches, see for example
N.F. Allard, F.Spiegelman and J.F. Kielkopf
A&A, 589, A21 (2016). Their theory differs
in various ways from the theoretical approach
described here.
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Transition Na 3p2P–3s2S at 589.36 nm

broadened by helium.

Half half-widths w/N and shifts d/N (in units

of 10−21MHz m3/atom = (2π)−1 × 10−9rad

s−1 cm3/atom)

one-perturber Baranger Theory
T (K) width width shift
100.0 0.1741 0.1733 -0.0303
200.0 0.2310 0.2306 -0.0343
300.0 0.2713 0.2711 -0.0368
500.0 0.3319 0.3318 -0.0407
700.0 0.3792 0.3791 -0.0433
1000.0 0.4373 0.4372 -0.0457
1500.0 0.5146 0.5146 -0.0483
2000.0 0.5775 0.5775 -0.0502
2500.0 0.6314 0.6314 -0.0517
3000.0 0.6789 0.6789 -0.0529
5000.0 0.8307 0.8307 -0.0570
10000.0 1.0855 1.8055 -0.0622
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Transition K 4p2P–4s2S at 767.83 nm

broadened by helium.

Half half-widths w/N and shifts d/N (in units

of 10−21MHz m3/atom = (2π)−1 × 10−9rad

s−1 cm3/atom)

one-perturber Baranger Theory
T (K) width width shift
100.0 0.1979 0.1979 -0.0325
200.0 0.2713 0.2713 -0.0378
300.0 0.3233 0.3233 -0.0380
500.0 0.3986 0.3986 -0.0359
700.0 0.4551 0.4551 -0.0341
1000.0 0.5222 0.5222 -0.0329
1500.0 0.6101 0.6100 -0.0334
2000.0 0.6819 0.6813 -0.0353
2500.0 0.7446 0.7427 -0.0377
3000.0 0.8012 0.7971 -0.0402
5000.0 0.9861 0.9702 -0.0490
10000.0 1.2808 1.2504 -0.0620
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Transition K 4p2P–4s2S at 767.83 nm

broadened by helium.

Half half-widths w(DW )/N (in units of 10−21MHz

m3/atom = (2π)−1×10−9rad s−1 cm3/atom)

Frequency separations from the line centre are

+/-DW(cm−1),T= 1000K

DW w(-DW)/N w(+DW)/N
0.0 0.5222 0.5222
5.0 0.5271 0.5270
10.0 0.5368 0.5382
15.0 0.5508 0.5555
20.0 0.5687 0.5784
25.0 0.5900 0.6061
50.0 0.7347 0.7983
100.0 1.1150 1.2892
200.0 1.9677 2.2106
500.0 3.9393 4.3063
1000.0 3.4908 6.2594
1500.0 1.0390 5.6612
2000.0 0.1612 0.0192
2500.0 0.0171 0.0005
3000.0 0.0014 0.0000
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