On the Stark broadening of some Cr II spectral lines in a plasma

A. Almodlej 1, N. Alwadie 1, 2, N. Ben Nessib 1, 3, and M. Dimitrijević 4, 5

1 Department of Physics and Astronomy, College of Sciences, King Saud University, Saudi Arabia
2 Department of Physics, College of Sciences, King Khalid University, Saudi Arabia
3 GRePAA, INSAT, Centre Urbain Nord, University of Carthage, Tunis, Tunisia
4 Astronomical Observatory, Volgina 7, 11060 Belgrade 38, Serbia
5 Sorbonne Université, Observatoire de Paris, Université PSL, CNRS, LERMA, F-92190 Meudon, France
Outline

– Introduction: Atomic structure of the Cr II ion
– Stark broadening of spectral lines in plasma
Outline

– Introduction: Atomic structure of the Cr II ion

– Stark broadening of spectral lines in plasma

 Plasma constituents
 Line profile-width and shift of a spectral line
 Line broadening
Outline

– Introduction: Atomic structure of the Cr II ion
– Stark broadening of spectral lines in plasma
 Plasma constituents
 Line profile-width and shift of a spectral line
 Line broadening
– Stark broadening of spectral lines in plasma
Outline

- Introduction: Atomic structure of the Cr II ion
- Stark broadening of spectral lines in plasma
 Plasma constituents
 Line profile-width and shift of a spectral line
 Line broadening
- Stark broadening of spectral lines in plasma
 General expression for the width of an isolated line:
 SCP approach
 SE approach
 MSE approach
Outline

- Introduction: Atomic structure of the Cr II ion
- Stark broadening of spectral lines in plasma
 Plasma constituents
 Line profile-width and shift of a spectral line
 Line broadening
- Stark broadening of spectral lines in plasma
 General expression for the width of an isolated line:
 SCP approach
 SE approach
 MSE approach
- Stark broadening of Cr II spectral lines:
 Precedent calculations
 Recent experimental work
 Present calculations
Outline

– Introduction: Atomic structure of the Cr II ion
– Stark broadening of spectral lines in plasma
 Plasma constituents
 Line profile-width and shift of a spectral line
 Line broadening
– Stark broadening of spectral lines in plasma
 General expression for the width of an isolated line:
 SCP approach
 SE approach
 MSE approach
– Stark broadening of Cr II spectral lines:
 Precedent calculations
 Recent experimental work
 Present calculations

– Conclusion
Outline

– Introduction: Atomic structure of the Cr II ion
– Stark broadening of spectral lines in plasma
 Plasma constituents
 Line profile-width and shift of a spectral line
 Line broadening
– Stark broadening of spectral lines in plasma
 General expression for the width of an isolated line:
 SCP approach
 SE approach
 MSE approach
– Stark broadening of Cr II spectral lines:
 Precedent calculations
 Recent experimental work
 Present calculations
– Conclusion
Outline

- Introduction: Atomic structure of the Cr II ion
- Stark broadening of spectral lines in plasma
 Plasma constituents
 Line profile-width and shift of a spectral line
 Line broadening
- Stark broadening of spectral lines in plasma
 General expression for the width of an isolated line:
 SCP approach
 SE approach
 MSE approach
- Stark broadening of Cr II spectral lines:
 Precedent calculations
 Recent experimental work
 Present calculations
- Conclusion
Introduction: Atomic structure of the Cr II ion

Singly ionized chromium Cr II is important for technology applications. It is also important for investigation in plasma physics, fusion research and plasma technologies.

A. Almodlej, N. Alwadie, N. Ben Nessib and M. Dimitrijević | Stark broadening of some Cr II spectral lines in a plasma
Introduction: Atomic structure of the Cr II ion

Fundamental configuration of Cr II

$$[\text{Ar}]\ 3d^5$$

Singly ionized chromium Cr II Singly ionized chromium is important for technology applications. It is also important for investigation in plasma physics, fusion research and plasma technologies.
Introduction: Atomic structure of the Cr II ion

Fundamental configuration of Cr II

\[[\text{Ar}] \, 3d^5 \]

Singly ionized chromium Cr II Singly ionized chromium is important for technology applications. It is also important for investigation in plasma physics, fusion research and plasma technologies.
Introduction: Atomic structure of the Cr II ion

$3d^4 4p\; ^2F_{5/2} \quad E = 74436.10\text{cm}^{-1}$

$3d^4 4p\; ^2F_{5/2} \quad E = 70584.39\text{cm}^{-1}$

$3d^4 4p\; ^2F_{5/2} \quad E = 68583.31\text{cm}^{-1}$
Introduction: Atomic structure of the Cr II ion

\[3d^4 4p \quad x^2 F_{5/2} \quad E = 74436.10 \text{cm}^{-1} \]

\[3d^4 4p \quad y^2 F_{5/2} \quad E = 70584.39 \text{cm}^{-1} \]

\[3d^4 4p \quad z^2 F_{5/2} \quad E = 68583.31 \text{cm}^{-1} \]

Seniority number
Stark broadening of spectral lines in plasma:

Plasma constituents
Stark broadening of spectral lines in plasma:

Line profile-width and shift of a spectral line
Stark broadening of spectral lines in plasma:

Line broadening

Spectral Line Broadening in Plasma

- Natural width
- Doppler width
- Collisional width

\[L(x) = \frac{1}{\pi^{\frac{3}{2}}} \frac{\gamma_L^2}{(x^2 + \gamma_L^2)} \]

\[j_{A,R}(x) = \frac{1}{\pi^{\frac{3}{2}}} \frac{W_R(\beta)}{1 + \left(x - A^{\frac{3}{2}} \beta^2 \right)^2} \, d\beta \]

\[G(x) = \sqrt[\ln(2)]{\pi \frac{-\ln(2) \left[\frac{x}{\gamma_G} \right]^2}{\gamma_G}} \]
Stark broadening of spectral lines in plasma:
General expression for the width of an isolated ion line

According to the impact approximation (Baranger, 1958), the full half-width (FWHM) of an isolated ion line is given by:

\[
W = N \left\{ v \left[\sum_{i'} \sigma_{j'\bar{i}} + \sum_{f'} \sigma_{f'\bar{f}} \right] \right\}_{av} + W_{el}
\]

where \(N\) is the electron density, \(\sigma_{j'\bar{j}}\) the inelastic cross sections for collisional transitions, \(\{.\}_{av}\) is the average over the electron velocity \(v\) distribution and \(W_{el}\) is the line width induced by elastic collisions.

Stark broadening of spectral lines in plasma:
SCP approach

According to the semiclassical perturbation approach (SSB 1969 and SSB et al. 2014):

\[W = N \int v f(v) \left(\sum_{i' \neq i} \sigma_{i'i}(v) + \sum_{f' \neq f} \sigma_{f'f}(v) + \sigma_{el} \right) \]

where \(f(v) \) is the Maxwellian velocity distribution function for electrons,

\[\sum_{j' \neq j} \sigma_{j'j}(v) = \frac{1}{2} R_1^2 + \int_{R_1}^{R_D} 2\pi \rho d\rho \sum_{j'j} P_{jj'}(\rho, v) \]

is the inelastic cross section and the elastic cross section is given by:

\[\sigma_{el} = 2\pi R_2^2 + \int_{R_2}^{R_D} 2\pi \rho d\rho \sin^2 \delta + \sigma_r \]

According to the semiempirical approach (Griem, 1968), the full half-width (FWHM) of an isolated ion line is given by:

\[
W = N \frac{8\pi}{3} \frac{\hbar^2}{m^2} \left(\frac{2m}{\pi kT} \right)^{1/2} \frac{\pi}{\sqrt{3}} \left[\sum_{i'} R_{i'i}^2 g \left(\frac{E}{\Delta E_{i'i}} \right) + \sum_{f'} R_{f'f}^2 g \left(\frac{E}{\Delta E_{f'f}} \right) \right]
\]

where \(E = \frac{3kT}{2} \) is the energy of the perturbing electron, \(\Delta E_{j'j} = |E_{j'} - E_j| \) is the energy difference between levels \(j' \) and \(j \), \(R_{j'j}^2 \) is the square of the coordinate operator matrix element and \(g(x) \) the Gaunt factor function for width.

Stark broadening of spectral lines in plasma:
MSE approach

According to the modified semiempirical approach (Dimitrijević and Konjević, 1980), the full half-width (FWHM) of an isolated ion line is given by:

\[
W = N \frac{8 \pi}{3} \frac{h^2}{m^2} \left(\frac{2m}{\pi kT} \right)^{1/2} \frac{\pi}{\sqrt{3}} \left[R^2_{l_i,l_i+1} \tilde{g} \left(\frac{E}{\Delta E_{l_i,l_i+1}} \right) + R^2_{l_i,l_i-1} \tilde{g} \left(\frac{E}{\Delta E_{l_i,l_i-1}} \right) + R^2_{l_f,l_f+1} \tilde{g} \left(\frac{E}{\Delta E_{l_f,l_f+1}} \right) + R^2_{l_f,l_f-1} \tilde{g} \left(\frac{E}{\Delta E_{l_f,l_f-1}} \right) + \sum_{i'j'} (R^2_{ii'}) \Delta n \neq 0 g \left(\frac{3kTn_i^3}{4Z^2E_H} \right) + \sum_{f'f} (R^2_{ff'}) \Delta n \neq 0 g \left(\frac{3kTn_f^3}{4Z^2E_H} \right) \right]
\]

\(E = \frac{3kT}{2}\) is the energy of the perturbing electron, \(\Delta E_{j',j} = |E_{j'} - E_j|\) is the energy difference between levels \(j'\) and \(j\), \(R^2_{j',j}\) is the square of the coordinate operator matrix element, \(\tilde{g}(x) = 7 - \frac{1}{Z} + g(x)\) and \(g(x)\) are the Gaunt factor functions for width.

Stark broadening of Cr II spectral lines:

Precedent calculations (Dimitrijević et al. 2007 & Simić et al. 2013)

Stark broadening of Cr II spectral lines:
Recent experimental work (Aguilera et al. 2014)

Table 1. Stark widths (FWHM) w (pm) and shifts d (pm) at electron density 1017 cm$^{-3}$ of Cr II spectral lines, compared to experimental and theoretical values reported in the literature. The temperature range is 12 000–16 300 K. The relative error of w is 15 per cent. The relative error of d is 11 per cent, with a minimum absolute error of 0.1 pm.

<table>
<thead>
<tr>
<th>No.</th>
<th>Transition</th>
<th>Multiplet</th>
<th>λ (Å)</th>
<th>Experimental</th>
<th>Theoretical</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>w</td>
<td>d</td>
<td>w^a</td>
</tr>
<tr>
<td>1</td>
<td>3d5–3d4(3D)4p</td>
<td>a6S–a6P*</td>
<td>2055.596</td>
<td>3.7</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2061.575</td>
<td>3.4</td>
<td>1.4</td>
</tr>
<tr>
<td>2</td>
<td>3d4(3D)4s–3d4(3D)4p</td>
<td>a6D–a6F*</td>
<td>2835.629</td>
<td>5.0</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2843.249</td>
<td>5.1</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2849.837</td>
<td>5.1</td>
<td>-0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2855.670</td>
<td>5.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2860.934</td>
<td>5.0</td>
<td>-0.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2862.571</td>
<td>4.7</td>
<td>0.0</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>a6D–a6P*</td>
<td>2766.531</td>
<td>4.4</td>
<td>-0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2762.589</td>
<td>4.5</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2757.720</td>
<td>4.7</td>
<td>-0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2751.864</td>
<td>4.8</td>
<td>-0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2750.727</td>
<td>5.1</td>
<td>-0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2748.980</td>
<td>5.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2743.641</td>
<td>5.1</td>
<td>0.0</td>
</tr>
<tr>
<td>4</td>
<td>a6D–a4P*</td>
<td></td>
<td>2672.826</td>
<td>5.4</td>
<td>-0.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2712.303</td>
<td>5.9</td>
<td>-0.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2653.578</td>
<td>5.3</td>
<td>-0.1</td>
</tr>
<tr>
<td>5</td>
<td>a6D–a6D*</td>
<td></td>
<td>2691.040</td>
<td>4.3</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2671.803</td>
<td>4.6</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2668.707</td>
<td>4.6</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2666.020</td>
<td>4.8</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2678.789</td>
<td>5.0</td>
<td>0.0</td>
</tr>
<tr>
<td>6</td>
<td>a6D–a4F*</td>
<td></td>
<td>2534.333</td>
<td>5.3</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Stark broadening of Cr II spectral lines:
Recent experimental work (Aguilera et al. 2014)

<table>
<thead>
<tr>
<th>7</th>
<th>(a^4D_{-z}^4P^*)</th>
<th>3368.041 9.1</th>
<th>-0.2</th>
<th>29.7</th>
<th>-9.52</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3422.732 8.5</td>
<td></td>
<td>29.7</td>
<td>-9.52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3342.576 8.7</td>
<td>-0.2</td>
<td>29.7</td>
<td>-9.52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3421.202 8.9</td>
<td></td>
<td>29.7</td>
<td>-9.52</td>
</tr>
<tr>
<td>8</td>
<td>(a^4D_{-z}^4F^*)</td>
<td>3132.053 7.2</td>
<td>-0.1</td>
<td>34</td>
<td>-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3124.973 7.4</td>
<td>-0.1</td>
<td>26</td>
<td>-12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3120.359 7.5</td>
<td>-0.2</td>
<td>22.6</td>
<td>-11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3118.646 7.6</td>
<td>-0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3147.220 7.5</td>
<td>-0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3128.692 7.1</td>
<td>-0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>(a^4D_{-z}^4D^*)</td>
<td>2870.432 6.5</td>
<td>0.4</td>
<td>22.3</td>
<td>-7.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2880.863 6.9</td>
<td>0.3</td>
<td>22.3</td>
<td>-7.06</td>
</tr>
<tr>
<td>10</td>
<td>(3d^1(\ell^2D)4s-3d^1(3^2F)4p)</td>
<td>(a^4D_{-y}^4F^*)</td>
<td>2107.944</td>
<td>4.1</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>(3d^1-3d^1(\ell^2D)4p)</td>
<td>(a^1G_{-z}^4F^*)</td>
<td>3180.693</td>
<td>10.7</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>(3d^1-3d^1(\ell^2H)4p)</td>
<td>(a^4G_{-z}^4F^*)</td>
<td>2247.169</td>
<td>10.9</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2314.721</td>
<td>5.0</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>(3d^1-3d^1(\ell^2D)4p)</td>
<td>(a^4D_{-z}^4H^*)</td>
<td>3360.291</td>
<td>12.1</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>(3d^1-3d^1(\ell^2P)4p)</td>
<td>(a^1P_{-z}^4D^*)</td>
<td>2397.748</td>
<td>5.9</td>
<td>1.6</td>
</tr>
<tr>
<td>15</td>
<td>(3d^1(\ell^2P)4s-3d^1(\ell^2P)4p)</td>
<td>(a^2P_{-y}^4D^*)</td>
<td>2935.132</td>
<td>6.6</td>
<td>6.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2940.847</td>
<td>6.6</td>
<td>-0.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2976.709</td>
<td>6.0</td>
<td>-0.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2961.721</td>
<td>6.2</td>
<td>-0.2</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>(3d^1-3d^1(\ell^2P)4p)</td>
<td>(a^2P_{-z}^4H^*)</td>
<td>2971.899</td>
<td>7.1</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>(3d^1(\ell^2P)4s-3d^1(\ell^2P)4p)</td>
<td>(a^4H_{-z}^4H^*)</td>
<td>2979.736</td>
<td>7.0</td>
<td>6.8</td>
</tr>
<tr>
<td>18</td>
<td>(a^4H_{-z}^4I^*)</td>
<td>2840.013 5.4</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2851.354 5.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>(3d^1(\ell^2P)4s-3d^1(\ell^2G)4p)</td>
<td>(a^4H_{-y}^4G^*)</td>
<td>2584.107</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>(3d^1(\ell^2P)4s-3d^1(\ell^2P)4p)</td>
<td>(a^1F_{-y}^4D^*)</td>
<td>2966.038</td>
<td>5.5</td>
<td>6.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3003.911 6.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>(3d^1(\ell^2P)4s-3d^1(\ell^2P)4p)</td>
<td>(a^2F_{-y}^4D^*)</td>
<td>2936.933</td>
<td>7.2</td>
<td>5.5</td>
</tr>
<tr>
<td>22</td>
<td>(3d^1(\ell^2P)4s-3d^1(\ell^2P)4p)</td>
<td>(a^3F_{-y}^4D^*)</td>
<td>2727.254</td>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>(3d^1(\ell^2P)4s-3d^1(\ell^2P)4p)</td>
<td>(b^4G_{-z}^4H^*)</td>
<td>3295.423</td>
<td>7.9</td>
<td>-0.4</td>
</tr>
<tr>
<td>24</td>
<td>(3d^1(\ell^2P)4s-3d^1(\ell^2P)4p)</td>
<td>(b^4G_{-z}^4H^*)</td>
<td>3295.423</td>
<td>7.9</td>
<td>-0.4</td>
</tr>
</tbody>
</table>
Stark broadening of Cr II spectral lines:
Recent experimental work (Aguilera et al. 2014)

<table>
<thead>
<tr>
<th>No.</th>
<th>Transition</th>
<th>Multiplet</th>
<th>λ (Å)</th>
<th>Experimental</th>
<th>Theoretical</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>w</td>
<td>d</td>
</tr>
<tr>
<td>25</td>
<td>3d<sup>4</sup>(3G)4s–3d<sup>4</sup>(3d)F4p</td>
<td>b<sup>4</sup>G–z<sup>4</sup>G*</td>
<td>3122.596</td>
<td>6.3</td>
<td>0.1</td>
</tr>
<tr>
<td>26</td>
<td>3d<sup>4</sup>(3G)4s–3d<sup>4</sup>(3G)4p</td>
<td>b<sup>4</sup>G–y<sup>4</sup>H*</td>
<td>2800.758</td>
<td>6.4</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td>b<sup>4</sup>G–y<sup>4</sup>F*</td>
<td>2792.151</td>
<td>5.4</td>
<td>0.0</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
<td>2785.692</td>
<td>5.7</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>3d<sup>4</sup>(3H)4s–3d<sup>4</sup>(3F)4p</td>
<td>a<sup>2</sup>H–z<sup>2</sup>H*</td>
<td>3050.130</td>
<td>7.5</td>
<td>1.0</td>
</tr>
<tr>
<td>30</td>
<td>3d<sup>4</sup>(3P)4s–3d<sup>4</sup>(3P)4p</td>
<td>a<sup>2</sup>P–z<sup>2</sup>S*</td>
<td>3290.763</td>
<td>9.2</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
<td>a<sup>2</sup>P–z<sup>2</sup>P*</td>
<td>3172.707</td>
<td>7.8</td>
<td>−0.1</td>
</tr>
<tr>
<td>32</td>
<td>3d<sup>4</sup>(3P)4s–3d<sup>4</sup>(3F)4p</td>
<td>a<sup>2</sup>P–y<sup>2</sup>F*</td>
<td>3150.137</td>
<td>7.2</td>
<td>−0.2</td>
</tr>
<tr>
<td>33</td>
<td>3d<sup>4</sup>(3F)4s–3d<sup>4</sup>(3F)4p</td>
<td>b<sup>2</sup>F–y<sup>2</sup>F*</td>
<td>3180.326</td>
<td>8.5</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td></td>
<td>b<sup>2</sup>F–z<sup>2</sup>F*</td>
<td>3028.124</td>
<td>7.7</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>3d<sup>5</sup>–3d<sup>4</sup>(3H)4p</td>
<td>b<sup>2</sup>H–z<sup>2</sup>H*</td>
<td>3041.720</td>
<td>9.2</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>3d<sup>5</sup>–3d<sup>4</sup>(1)4p</td>
<td>b<sup>2</sup>H–1<sup>2</sup>H*</td>
<td>2575.788</td>
<td>5.7</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>3d<sup>5</sup>–3d<sup>4</sup>(a 1G)4p</td>
<td>b<sup>2</sup>H–x<sup>2</sup>H*</td>
<td>2574.732</td>
<td>7.8</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>3d<sup>5</sup>–3d<sup>4</sup>(1)4p</td>
<td>b<sup>2</sup>H–w<sup>2</sup>H*</td>
<td>2416.393</td>
<td>6.2</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>3d<sup>5</sup>–3d<sup>4</sup>(a 1D)4p</td>
<td>a<sup>2</sup>G–u<sup>2</sup>F*</td>
<td>2213.065</td>
<td>5.3</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>3d<sup>5</sup>(3D)4s–3d<sup>4</sup>(3D)4p</td>
<td>c<sup>2</sup>D–w<sup>2</sup>D*</td>
<td>2838.778</td>
<td>5.5</td>
<td>0.2</td>
</tr>
<tr>
<td>41</td>
<td>3d<sup>6</sup>(3G)4s–3d<sup>6</sup>(3G)4p</td>
<td>b<sup>2</sup>G–x<sup>2</sup>G*</td>
<td>3107.563</td>
<td>7.9</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td></td>
<td>b<sup>2</sup>G–x<sup>2</sup>G*</td>
<td>2927.083</td>
<td>6.9</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>3d<sup>4</sup>(a 1G)4s–3d<sup>4</sup>(a 1G)4p</td>
<td>a<sup>2</sup>G–w<sup>2</sup>G*</td>
<td>2774.430</td>
<td>6.3</td>
<td>1.3</td>
</tr>
<tr>
<td>44</td>
<td>3d<sup>5</sup>–3d<sup>4</sup>(a 3F)4p</td>
<td>c<sup>2</sup>F–y<sup>2</sup>F*</td>
<td>3306.955</td>
<td>7.8</td>
<td>0.0</td>
</tr>
<tr>
<td>45</td>
<td>3d<sup>5</sup>(3D)4s–3d<sup>4</sup>(3D)4p</td>
<td>b<sup>2</sup>D–w<sup>2</sup>F*</td>
<td>2941.957</td>
<td>6.6</td>
<td>0.7</td>
</tr>
</tbody>
</table>

^aRathore et al. (1984). Temperature 13 700 K.
^bDimitrijević et al. (2007). Data interpolated to a temperature of 14 000 K.
^cSimić et al. (2013). Data interpolated to a temperature of 14 000 K.
Stark broadening of Cr II spectral lines:
Present calculations

Cr II: 4s $a^4D - 4p z^4F^\circ$
$\lambda=3127.92 \, \text{Å}$

$log(W(\text{Å})) = 1.56305 - 0.74906 \log(T(K)) + 0.03043 (\log(T(K)))^2$

Aguilera et al. Experimental values (2014)

$W(\text{MSE}) = 1.4 \, W(\text{Ag})$
$W(\text{Ag}) = 260 \, W(\text{D})$

$log(W(\text{Å})) = 0.33379 - 1.48039 \log(T(K)) + 0.12909 (\log(T(K)))^2$
Stark broadening of Cr II spectral lines: Present calculations

Cr II: 4s b^4P - 4p y^4D°
λ=2942.89 Å

log[W(Å)] = 2.00848 - 1.00029log[T(K)] + 0.06125(log[T(K)])^2

Aguilera et al. Experimental values (2014)
Conclusion

In this work, we calculate the spectral line widths of some Cr II lines at an electron density of 10^{17} cm$^{-3}$ and electron temperatures from 5000 K to 80000K using the modified semi-empirical (MSE) approach. The needed atomic data are taken from NIST database.

The obtained widths are compared to Dimitrijević et al. (2007), Simić et al. (2013) and Aguilera et al. (2014) values.
Thank you for your attention
Thank you for your attention
Thank you for your attention

شكرا لحسن استماعكم

Hvala na pažnji
Thank you for your attention

شكرا لحسن استماعكم

Hvala na pažnji