Emission-lines of the dwarf elliptical galaxy NGC 185

Vučetić M. Milica, Ilić Dragana, Egovor Oleg, Moiseev Alexej, Onić Dusan, Arbutina Bojan, Urošević Dejan, Petrov Nikola

1Department of Astronomy, Faculty of Mathematics, University of Belgrade;
2Special Astrophysical Observatory, Russian Academy of Sciences;
3Lomonosov Moscow State University, Sternberg Astronomical Institute;
4Space Research Institute, Russian Academy of Sciences;
5Institute of Astronomy and National Astronomical Observatory, Bulgarian Academy of Sciences
e-mail: mandjelic@matf.bg.ac.rs
Survey of emission line nebulae by Belgrade group

- search for supernova remnants (SNR) and H II regions in near-by galaxies
- PIs: Milica Vucetic, Bojan Arbutina
 - Rozhen Telescope 2m
 - Tubitak Telescope 2m
- narrow-band photometry of nearby galaxies
- use [SII]/Hα ratio to trace SNR (>0.4)

IC 1613: Hα image (continuum subtracted) with HI contours overlaid
NCG 185 galaxy

- Dwarf elliptical/spheroidal, Andromeda’s satellite
- d=617 kpc (Ge et al. 2015)
- Showing some population I features – blue stars, young stellar clusters (Baade 1951), gas (Young & Lo 1997), and SNR candidate?
- Star formation a few Gyr ago in the outer parts (HST color-mag. diagram), and a few Myr ago in a central 200 pc of NGC 185
- Was even (wrongly) classified as an AGN (Ho et al. 1997)
Previous observations of an SNR candidate in NGC 185

- Long-slit spectra across the central part of the galaxy, using 4 m Mayall telescope (Gallagher et al. 1984)
- Hα narrow band image showed crescent-shaped morphology, and about 17” = 50 pc in diameter, [SII]/Hα=1.5 (Young & Lo 1997)
- Not detected in radio - Dickel et al. (1985), Ho & Ulvestad (2001)
- Not detected in X-rays - Brandt et al. (1997)
- Gonçalves et al. (2012) - Gemini multi-object spectrograph observations of the Hα emitting population in NGC 185
 - **Strange SNR properties** – diameter 2 pc, lower [SII]/Hα ratio of 0.5
Our observations of NGC 185

2m Rozhen, Bulgaria
Narrow-band photometry

6m BTA, SAO, Russia
Long-slit spectroscopy
Optical photometry

- 2m telescope, Rozhen
- Hα, [SII] and cont. narrow filters (3 nm FWHM)
- deep exposure (80 mins)
- we have found:
 1. six PNe (1, 2, 3, 4, 5, 10)
 2. one symbiotic star
 3. one H II region!! (7)
 4. two SNR candidates (8, 9)
 5. one PN with shocks? (6)

keep in mind objects 6, 7, 8, 9
Optical spectroscopy

- 6-m telescope of SAO RAS with SCORPIO-2 multi-mode focal reducer in long-slit mode

- Two slit positions in low resolution mode (FWHM~500 km/s) PA88, PA150; three slit positions in high res. mode (FWHM~120 km/s)
 - Emiss. line fluxes and ratios
 - Line of sight velocity – shock velocity
 - Velocity dispersion
Archival data – XMM-Newton & VLA

-0.4 keV - 7.0 keV; ~90 ks combined EPIC
-soft, thermal origin source; diameter 14”
-high intrinsic absorption

-beam size 14.4”, 1.4 GHz
-indication of the diffuse radio continuum emission
-flux of SNR 8 ~1.4 mJy
BPT diagrams

- Overlapped Allan et al. (2008) radiative shock models; n=10 cm$^{-3}$, Solar abundances
Diagnostic diagram

Velocity map

$V_{NGC185} = -203.8$ km/s

Shocks

Photoionization

Hα contours
Object 8 - SNR

- $[\text{SII}]/\text{H}\alpha \sim 1.5-2.0$
- diameter 45 pc
- expansion velocity ~ 90 km/s
- $n_e \sim 200$ cm$^{-3}$
- age $\sim 1 \times 10^5$ yrs (for Sedov-Taylor solution)
- in late radiative phase (faint in radio)
Object 9 – SNR – NEW!

-[SII]/Hα 0.7-1.2
-diameter 50 pc
-expansion velocity ~30 km/s
-age ~3.5-6 x10^5 yrs
Object 7

- $[\text{S}II]/\text{H}$α ~ 0.5
- diameter < 6 pc
- faint $[\text{O}III]$ lines!!
- no bulk velocity
Object’s 7 position on BPT
Object 7 - ?

-[SII]/Hα ~0.5
-diameter <6 pc
-faint [OIII] lines
-no bulk velocity

Two possibilities:
(i) a compact **H II region** with overlaid shock-ionized gas from objects 8 or 9 (or both)
(ii) a **part of the old evolved SNR** – of object 8 or 9, encountering an ISM condensation
Object 6 - ?

- [SII]/Hα ~1.0
- [NII]/Hα ~0.7-2.0
- diameter <6 pc
- low [OIII] lines
- suggested as PN by Gonsalves et al. (2012)
- additional shock heating?
Archival data – XMM-Newton & VLA

- 0.4 keV - 7.0 keV; ~90 ks combined EPIC
- soft, thermal origin source; diameter 14"
- high intrinsic absorption

- beam size 14.4", 1.4 GHz
- indication of the diffuse radio continuum emission
- flux of SNR 8 ~1.4 mJy
Proposal sent to Chandra

- we hope to get better resolution and resolve the object 8 in X-ray
- we plan to apply for new radio observations (VLA or GMRT)
Summary

- Hα and [S II] observations detected 11 objects – out of which 1 PN with some shock ionization; 1 previously known SNR, 1 NEW optical SNR candidate; 1 composite object (photoionization with some signatures of shock, probably H II region)

- Spectroscopic observations confirmed 2 SNRs and HII region

- Complex kinematics: extended emission with filaments (expansion $\sim 50 – 90 \text{ km s}^{-1}$)

- Estimated electron density $\sim 200 \text{ cm}^{-3}$ (higher than expected in elliptical galaxy)

- XMM-Newton: presence of an extended source in projection of our SNR candidate

- VLA radio data: weak and unresolved, diffuse radio continuum emission in the center of NGC 185

- ...and we need more data

THANK YOU!